“When will it be done?” “How many items will I get in the next release?” “When will all of the items in the backlog be completed?” Those are some of the first questions that your customers will ask you once you start work for them.
This hands-on ProKanban.org workshop delivered by Kanban expert Daniel Vacanti and co-trainer Peter Götz will provide you with the tools you need to answer those questions predictably. In this tutorial, attendees will learn what metrics are necessary for accurate forecasting, how to visualize those metrics in appropriate analytics, how to use those analytics to make reliable forecasts and understand risk, and, finally, how to make meaningful interventions for overall process improvement.
Certificate
The course will give you the opportunity to assess their knowledge and receive the industry recognized Professional Applied Metrics certificate from ProKanban.org.

Learning Outcomes
After attending the course, learners will have:
- An understanding of what Lean-Agile metrics are necessary for predictability
- An ability to make accurate forecasts for single items including how to forecast when an individual story, epic, or feature will be done
- An ability to make accurate forecasts for multiple items including how to know when all items remaining in a backlog will be done or an ability to project how many items will be completed by a given release date and the risks associated with each
- An understanding of how to use flow metrics and analytics to achieve a stable process including an understanding of why a stable process is necessary for accurate forecasting
Who Should Attend
The Applying Metrics for Predictability course is for anyone who has been asked to answer “When Will It Be Done?” or otherwise had to give an estimate for a User Story, Epic, Feature, Project, and/or Release. This includes executives, managers, or team members who want better understanding and transparency into the health and performance of their process. Anyone who currently uses Agile or Lean Methodologies and is interested in how to improve the overall predictability and efficiency of their current practices will benefit from Applying Metrics for Predictability.